***MASTER MAGNETICS REMAINS OPEN FOR BUSINESS! - CUSTOMER SERVICE: 866-867-0941***

Samarium Cobalt (SmCo) Magnets

Extremely strong rare earth magnets, Samarium Cobalt magnets (SmCo) are composed of samarium, cobalt and iron. Not sure if samarium cobalt is the best material for your application? Review our permanent magnetic materials comparison for more information. 

Manufacturing - In general, the elements are melted together and milled into a powder that is dry-pressed to shape in the presence of a magnetic field. The material is then sintered, aged, ground to dimension, magnetized and tested. They are called “rare earth” magnets because the elements of samarium cobalt are classified as such in the lanthanides section of the Periodic Table of the Elements.

Tolerances - For as-pressed material, tolerance on the thickness (direction of magnetization) is +/- .005”. Other dimensions are +/- 2.5% or +/- .010”, whichever is greater.

According to International Magnetics Association (IMA) standards, visual imperfections such as hair-line cracks, porosity and minor chips are commonly found in sintered metallic magnets. A chipped edge is considered acceptable if no more than 10% of the surface is missing. Cracks are acceptable as long as they do not extend across more than 50% of pole surface.

Magnetizing and Handling - samarium cobalt magnets are very brittle and very strong magnetically. Therefore, it is crucial to handle these magnets with extreme care to avoid personal injury and damage to the magnets. Fingers can be severely pinched between attracting magnets. Magnets can chip if allowed to “jump at” an attracting object. It is highly recommended that when constructing rare earth magnetic assemblies, the magnets be magnetized after assembly. These magnets are NOT for children.

Machining - Since samarium cobalt magnet material is prone to chipping and cracking, it does not lend itself to conventional machining methods. It can, however, be abrasively ground, but only with the use of liberal amounts of coolant. The coolant minimizes heat fracturing and the risk of fires caused by oxidized grinding dust.

Typical Magnetic and Physical Properties of Samarium Cobalt

Samarium Cobalt Material Density Max. Energy Product
BH (max)
Typical Residual Induction Br (max) Coercive Force Hc (min) Intrinsic Coercive Force (Hci) Maximum Operating Temperature Curie Temperature
  lbs/in3 g/cm3 MGO Gauss Oersteds Oersteds
SmCo 18 0.296 8.2 16 - 18 8700 ≥8100 ≥16000 482 250 1382 750
SmCo 20 0.296 8.2 19 - 21 9200 ≥8500 ≥16000 482 250 1382 750
SmCo 22 0.299 8.3 20 - 22 9500 ≥8900 ≥16000 482 250 1382 750
SmCo 24 0.304 8.4 22 - 24 9900 ≥9100 ≥18000 662 350 1508 820
SmCo 26 0.304 8.4 24 - 26 10400 ≥9400 ≥18000 662 350 1508 820
SmCo 28 0.303 8.4 26 - 28 10700 ≥9500 ≥18000 662 350 1508 820
SmCo 30 0.303 8.4 28 - 30 11000 ≥9900 ≥18000 662 350 1508 820

Applications of Samarium Cobalt Magnets

  • Computer disc drives and sensors
  • Traveling wave tubes
  • Linear actuators and satellite systems
  • Motors where temporary stability is vital

Attributes of Samarium Cobalt Material

  • High resistance to demagnetization
  • High energy (magnetic strength is strong for its size)
  • Good to moderately high temperature stability
  • Pricing for samarium cobalt is market sensitive